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3D usual iterative reconstruction
Parametric indirect regression with basis functions

Assume a set of normalized basis functions φ1, . . . , φJ (e.g.
voxels, blobs) and parametrize a function with fixed finite size
g = {g1, . . . , gJ}

G (x ; g) =
J∑

j=1
gj φj (x)

Find optimal parameters (optimize) from data n = n1, . . . , nI

where ni |g
iid∼ Poisson(

∑I
i=1 pijgj)

ĝ = argmin
g>0

(− logL(g|n) + λΨ(g))

Expectation-Maximization “family” algorithm.
ML estimator (λ = 0): [Vardi et al., 1985].
MAP (aka Bayesian) estimator: prior on g = exp(−λΨ(g)) , e.g.
Gibbs field, see [Green, 1990].
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Same thing in 4D
Additional set of basis functions

Assume another finite set of temporal basis functions
B1, . . . ,BK (e.g. spline, etc) and set g = {g11, . . . , gJK}

G (x , t; g) =
K∑

k=1

J∑
j=1

gjk φj (x)Bk (t)

Find optimal parameters from data τ = τ11, . . . , τ1n1 , . . . , τInI

with τi1, . . . , τini |g∼Poisson process (
∑I

i=1 pij
∑K

k=1 gjkBk(t))

ĝ = argmin
g>0

(− logL(g|τ ) + λΨ(g))

Expectation-Maximization “family” algorithm.
ML, MAP, penalized likelihood...
[Nichols et al., 2002, Reader et al., 2006].
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Parametric modeling shortcomings
Model misfit

Open questions.
Choice of φj and Bk (e.g voxel size) ?
How many basis functions J and K ?
Do we trust that function of interest G?(x , t) can be expressed
as G?(x , t) = G(x , t; g) for some ĝ

Do we trust in a digitized brain structure ?
Do Gibbs fields correspond to biological structures prior ?

Can we give an interpretation to models with several millions
(3D) or billions (4D) of parameters ?

Model selection
Models have deep influence on inverse problem regularization.
Models are almost never correct for real world data...
Model selection and averaging are suitable to prevent over and
under-fitting.
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Nonparametric vs. parametric Models
Parametric models with infinitely many parameters...

Parametric models
Characterized by a fixed-size vector of real-valued parameters.
Basis functions (reconstruction grid) do not depend on data.

Nonparametric models.
6= no parameter !
The number of parameters can grow unboundedly with the
dataset length.
Let the data choose the appropriate complexity of the model.
A model over infinite dimensional function or measure spaces.
Side-step model selection and averaging.
From discrete–discrete to discrete–continuous reconstruction.
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Why Bayesian nonparametrics ?
First, why to be Bayesian...

Bayes’ rule

P (Θ|Y) =
P (Y|Θ)P (Θ)∫
Sθ P (Y|θ)P (θ) dθ

Prior knowledges.
Statistical knowledges on objects : e.g. probability measure on
R3 × R+.
Field specific knowledges : e.g. biological, physical.
Explicit degree of belief in priors.

“Honest” estimation.
Whole set of solutions via posterior distribution ( 6= MAP).
→ Posterior uncertainty e.g. highest probability density (HPD)
interval of activity concentration for any ROI.
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Why Bayesian nonparametrics ?
How to combine Bayes and nonparametrics ?

Contrast with parametric priors
Priors on infinite-dimensional objects (here probability measure)
→ stochastic processes.
Prior give insight to correlation structure (smoothness, etc).

Regularization
Solutions set dense in infinite-dimensional spaces.

Difficulties
How to elicit prior G for nonparametric G(x , t) ?
How to infer on infinite dimensional objects in real life ?
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Nonparametric Bayesian model for 4D PET
A general framework

Nonparametric Bayesian Poisson inverse problem framework

G ∼ G

F (·, t) =

∫
X
P (·|x) G (dx, t)

Yi ,Ti |F
iid∼ F , for i = 1, . . . , n

(1)

G(·): G-distributed random probability measure (RPM), defined on
(X × T , σ(X )⊗ σ(T )).
Objective: estimate the posterior distribution of G(·) from the observed
F -distributed dataset (Y,T)′ = {(Y1,T1), . . . , (Yn,Tn)}.
P(·|x): given probability distribution, indexed by x, defined on (Y, σ(Y)).

Emission Tomography context X ⊆ R3, T ⊆ R+.

Yi : index of the tube of response (TOR) and Ti : arrival time of the i th
observed event.
Radon: P (y = l |x) ∝ δ(〈~φl , x〉 − ul )
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Interpretation of BNP modeling for PET
Replacement for finite fixed size basis functions set

Probability measure of annihilations events (“origins set”)
Define space-time clusters of annihilations events.
Think about (overlapping) blobs whose number, different shapes
and locations may be driven by data.
See G(·) as the (nonparametric) probability distribution of
clustered origins.
E.g. voxels are replaced by data driven components.

Questions
How to control (regularize) the number of components ?
How to introduce annihilations events ?
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Dirichlet process
The cornerstone of Bayesian nonparametrics [Ferguson, 1973]

Definition
G0 be a probability measure over (X ,B) and α ∈ R+?.
A Dirichlet process is the distribution of a random measure G
over (X ,B) s.t., for any finite partition (B1, . . . ,Br ) of X ,

(G (B1) , . . . ,G (Br )) ∼ Dir (αG0 (B1) , . . . , αG0 (Br ))

G0 is the mean distribution, α the concentration parameter.
We write G ∼ DP (α,G0).

Representations of Dirichlet processes
Pólya urns (DP arises here as the De Finetti measure of the
exchangeable sequence).
Stick-breaking representation (constructive).
Chinese restaurant (prior over partitions).
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

1 P(X1)

Figure: Assignment probability for customer 1.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Figure: Table draw for customer 1.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:
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n+α

with nk the number of customers
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

1
1+α

α
1+α

P(X2|X1)

θ1

Figure: Assignment probability for customer 2.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

1
1+α

α
1+α

θ1

P(X2|X1)

Figure: Table draw for customer 2.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

2
2+α

α
2+α

θ1

P(X3|X2)

Figure: Assignment probability for customer 3.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

2
2+α

α
2+α

θ1

P(X3|X2)

θ2

Figure: Table draw for customer 3.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

2
3+α

1
3+α

θ1

P(X4|X3)

θ2

α
3+α

Figure: Assignment probability for customer 4.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.
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θ1

P(X4|X3)

θ2

α
3+α

θ3

Figure: Table draw for customer 4.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

2
4+α

1
4+α

θ1

P(X5|X4)

θ2

1
4+α

θ3

α
4+α

Figure: Assignment probability for customer 5.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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A worthy allegory for partition prior construction.
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1
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θ1
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θ2 θ3

α
4+α

1
4+α

Figure: Table draw for customer 5.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
A worthy allegory for partition prior construction.

. . .

3
5+α

1
5+α

θ1

P(X6|X5)

θ2 θ3

α
5+α

1
5+α

Figure: Assignment probability for customer 6.

Xn = X1, . . . ,Xn take on K < n distinct values θ1, . . . , θK .
This defines a partition of {1, . . . , n} into K clusters, s.t. i
belongs to cluster k iff Xi = θk .
Sequentially generating from a CRP

First customer sits at table 1 and order θ1 ∼ G0.
Customer n + 1 sits at:

Table k with probability nk
n+α

with nk the number of customers
at table k.
A new table K + 1 with probability α

n+α
and order θK+1 ∼ G0
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Chinese restaurant process
Clustering behaviour (α = 30).

The CRP exhibits the clustering property of the DP.
Expected number of clusters K = O(α log n).
Rich-gets-richer effect → Reinforcement (small number of large
clusters).
E.g.: Ewens sampling formula, species sampling.
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Stick-breaking representation
Constructive definition, [Sethuraman, 1994]

Stick-breaking representation.

θ = (θ1, θ2, . . .)
iid∼ G0

V = (V1,V2, . . .)
iid∼ Beta (1, α)

p = (p1, p2, . . .), s.t. p1 = V1 and pk = Vk
∏k−1

i=1 (1− Vi ).
Then,

G (·) ,
∞∑

k=1
pk δθk (·)

is a DP (α,G0)-distributed random probability distribution.
We say that: p ∼ GEM(α).
Almost sure truncation, [Ishwaran and James, 2001]:
PN (·) =

∑N
k=1 pk δθk (·) with VN = 1 converges a.s. to a

DP (αG0) random probability measure.
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Stick-breaking representation
Example of construction

0 0.5 1
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k = 0

Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Stick-breaking representation
Example of construction
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Figure: Dirichlet process GEM construction (α = 3, G0 = N (0, 1)).
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Dirichlet process mixtures
Continuous data modeling

Discreteness of DP(α,G0) generated measures
Cannot be used for probability density functions estimation !
→ Hierarchical mixture model with continuous distribution φ.

Hierarchical data model

Yi |Xi ∼ φ(Yi |Xi )

Xi ∼ H(·)
H ∼ DP(α,G0)

Data distribution

y |H ∼
∞∑

k=1
pk φ(y |θk) = G(y)

E.g.: Dirichlet mixture of Normals with G0 taken as
Normal-Inverse Wishart, s.t. θk = (µk ,Σk).
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Posterior sampling of DPM
Specific random schemes

How to infer on infinite dimensional objects in a real world (and
in a decent time) ?
Sampling from the posterior: specific MCMC techniques.

Integrate out the random distribution: [Escobar, 1994],
[Mac Eachern and Müller, 1998], [Neal, 2000].

side-step infiniteness by marginalization, only the allocation to
occupied clusters (finite number) is sampled (Pólya Urn
scheme).
Collapsing → good mixing properties.
Gives only access to sequences generated from the RPM.

Almost sure truncation: [Ishwaran and James, 2001].
Easy implementation.

Slice sampling: [Walker, 2007], [Kalli et al., 2011].
Conditional approach: inference retains whole distribution.
Use of auxiliary variables: only a finite pool of atoms are
involved at each iteration, without truncation.
Gives access to posterior of any functional of the RPM (mean,
variance, credible intervals, etc.).

Variational techniques: [Blei and Jordan, 2006].

ISSSMA Workshop, June 3, 2013 16 / 30



BNP for
dynamical PET
reconstruction

Éric Barat

Nonparametric
vs. parametric
models

Bayesian
nonparametrics

Random
probability
measures
Dirichlet process

Chinese restaurant

Stick-breaking

Dirichlet mixtures

Pólya tree

3D BNP PET

4D BNP PET

Conclusion

Pólya tree process
Definition

Definition
Let E = {0, 1}, Em = E × · · · × E and E? = ∪∞m=0Em.
Let πm = {Bε : ε ∈ Em} be a partition of T and Π = ∪∞m=0πm.
A probability distribution Q on T has a Pólya tree distribution
PT(Π,A) if there are nonnegative numbers A = {αε : ε ∈ E?} and
r.v. W = {Wε : ε ∈ E?} s.t.
W is a sequence of independent random variables,
for all ε in E?, Wε ∼ Beta(αε0, αε1), and
for all integer m and ε = ε1 · · · εm in Em,

Q(Bε1···εm ) =
m∏

j=1
εj =0

Wε1···εj−1 ×
m∏

j=1
εj =1

(1−Wε1···εj−1)

Note that for ε ∈ E?, Wε0 = Q (Bε0|Bε)
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Figure: Pólya tree sequence construction (normal mean).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Figure: Pólya tree sequence construction (A = {αm = 3m}).
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Spatial hierarchical model for PET data
DPM of latent emission locations

Spatial hierarchical model

Yi |Xi
ind∼ P (Yi |Xi )

Xi |Zi
ind∼ N (Xi |Zi )

Zi |H
iid∼ H

H ∼ DP (α,NIW)

(2)

Remarks
Tomography: Only Yi is observed, thus Xi (the emission location) is
introduced as latent variable (origin).
In EM approach, latent variables are the number of emissions from
voxel v which are recorded in line of response l .
Compared to BNP density estimation, PET reconstruction mainly
involves a sampling step from conditional (Xi |Yi , p, θ).
Spatial distribution: G(·) =

∫
Θ
N (·|θ)H(dθ) =

∑∞
k=1 pk N (·|θk ).
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Inference by Gibbs sampling
Sampling from conditional distributions

Sampling from the posterior

Let introduce C = C1, C2, . . . , Cn, the classification of emissions to
DP components s.t. Zi = θCi for all i < n.
Let u = u1, u2, . . . , un uniform auxiliary variables.
Successively draw samples from the following conditionals

Annihilation location : (X|Y, p, θ, u)

DPM component parameters : (θ|C,X)

Emission allocation to DP atoms : (C|p, θ,X, u)

DP weights & auxiliary variables : (p, u|C)

Sampling X|Y, p, θ, u: Metropolis (independent MH) within Gibbs

(Xi |Yi , p, θ, u)
∝∼ P(Yi |Xi ) G(Xi |p, θ, u)

P(Yi |Xi ) accounts for physical and geometrical properties of PET
system → no hope for conjugacy...
Candidate: X?

i |Yi , p, θ, u
∝∼ N (X?

i |µYi ,ΣYi ) G(X?
i |p, θ, u)
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Gibbs sampler in action
A toy system...

Iteration k , (p, u|C), (θ|C,X)
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A toy system...

Event Yi
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Gibbs sampler in action
A toy system...

Back-projection Xi |Yi , p, u, θ
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Gibbs sampler in action
A toy system...

Event Yi+1
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Gibbs sampler in action
A toy system...

Back-projection Xi+1|Yi+1, p, u, θ
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Gibbs sampler in action
A toy system...

Back-projections X|Y, p, u, θ
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Gibbs sampler in action
A toy system...

Cluster allocations C|θ, p, u, X
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Gibbs sampler in action
A toy system...

Iteration k + 1, (p, u|C), (θ|C, X)
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Synthetic data
True coincidences from a realistic digital phantom

Phan

MAP

BNP
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Posterior uncertainty
Statistical coverage
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Figure: 20% decreased uptake in left putamen concentration (red) vs.
right putamen (blue) for 20 replicas and 2 dataset lengths. Concentration
= (total activity on volume V )/V
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Dynamic PET Data
Tissue kinetics: time dependency

Modeling metabolic activity
Biokinetic: tissue dependent.
Functional volume (FV):
spatial region characterized
by a particular kinetic.
Radioactive decay.

Separable space-time activity distribution

G (x, t) =
∞∑

k=1
pk N (x|θk) Q̃k (t)

Kinetics RPM
Each event Yi is time stamped (Ti).
Continuous measure with compact support (right truncation).
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Hierarchical space-time model for dynamic PET data
Dependent DPM of Pólya trees

Space-time hierarchical model

Yi |Xi
ind∼ P (Yi |Xi )

Xi ,Ti |Zi ,Qi
ind∼ N (Xi |Zi )× Qi (Ti )

Zi ,Qi |H
iid∼ H

H ∼ DP (α,NIW ×K0)

K0 ∼ DP (β,PT (A,Q0))

With H =
∑∞

k=1 wk δ
θk ,Q̃k

, where Q̃ are i.i.d. K0

K0 =
∑∞

j=1 πj δQ?j with π ∼ GEM(β), Q? are i.i.d. PT(A,Q0), a
Pólya tree with parameters A and mean Q0.
K0: DP process with PT process as base distribution → nested RPM
(cf. nested DP, [Rodriguez et al., 2008])
Distinct θk may share the same Q?

j (K0 is discrete) → partial
Hierarchical DP [Teh et al., 2006]; (diffuse NIW ×K0).
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Gibbs sampler for dynamic PET
Hierachical clustering

Additional latent variables

Allocation variable: Dk = j iff Q̃k = Q?
j (kinetics clustering).

Auxiliary variables v for slice sampling of K0.

Posterior computations
Gibbs sampling of additional conditionals is straightforward.

Functional volumes distribution
For all j (label of K0 atoms),

FVj (x) =
∑

k: Q̃k =Q?j

pk N (x|θk)
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4D synthetic data
Application and results

Data generation (FDG tracer)
4 FV : gray matter, white matter, cerebellum, tumors.
Blood pool and blood fraction in tisssues (5% to 10%).
n = 107 events (≈ 1

10 usual dose for 4D PET).
Same 3D phantom.

4D activity
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4D synthetic data
Estimated kinetics and functional volumes
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4D clinical data
Comparison with ML-EM + post-smoothing

Cardiac data
Biograph scanner, bone metabolism tracer, evaluation of
potential interest in cardiology.
BNP : dose ÷30; EM+smoothing : dose ÷1
∆T = 11 min, sharp kinetic during first minute.

Figure: up: EM (÷1); bottom: BNP (÷30) 4D BNP vs EM
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Conclusion
and perspectives.

Some observations...
Suitable nonparametric framework for discrete-continous 3D/4D
PET.
Flexible data modeling : hierarchical, dependent, etc.
From low level data to high level structures in a unified
framework.
Access to posterior intervals (uncertainty).
Sampling schemes have to be carefully considered.

...and perspectives
Prior refinements.
Computing architecture consistent with MCMC approach.
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