

BNP for dynamical PET reconstruction

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

3D BNP PET

4D BNP PET

Conclusion

Bayesian Nonparametric Approaches for Reconstruction of Dynamical PET Data.

Éric Barat¹ Claude Comtat², Thomas Dautremer¹, Diarra Fall³, Thierry Montagu¹ and Simon Stute²

¹Laboratory of Modeling, Simulation and Systems, CEA, LIST ²Frédéric Joliot Hospital Service, CEA, SHFJ ³MAP5, Paris-Descartes University eric, barat@cea_fr

ISSSMA Workshop June 3, 2013

3D usual iterative reconstruction

Parametric indirect regression with basis functions

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability

3D BNP P

4D BNP PE

Conclusion

Assume a set of normalized basis functions ϕ_1, \dots, ϕ_J (e.g. voxels, blobs) and parametrize a function with fixed finite size $\mathbf{g} = \{g_1, \dots, g_J\}$

$$G(x; \mathbf{g}) = \sum_{j=1}^{J} g_{j} \phi_{j}(x)$$

■ Find optimal parameters (optimize) from data $\mathbf{n} = n_1, \dots, n_l$ where $n_i | \mathbf{g} \stackrel{iid}{\sim} \mathsf{Poisson}(\sum_{i=1}^l p_{ij} g_j)$

$$\hat{\mathbf{g}} = \underset{\mathbf{g} > 0}{\mathsf{argmin}} (-\log \mathcal{L}(\mathbf{g}|\mathbf{n}) + \lambda \Psi(\mathbf{g}))$$

- Expectation-Maximization "family" algorithm.
 - ML estimator ($\lambda = 0$): [Vardi et al., 1985].
 - MAP (aka Bayesian) estimator: prior on $\mathbf{g} = \exp(-\lambda \Psi(\mathbf{g}))$, e.g. Gibbs field, see [Green, 1990].

Same thing in 4D Additional set of basis functions

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability

measures

4D BNP PET

Conclusion

Assume another finite set of temporal basis functions B_1, \ldots, B_K (e.g. spline, etc) and set $\mathbf{g} = \{g_{11}, \ldots, g_{JK}\}$

$$G(x, t; \mathbf{g}) = \sum_{k=1}^{K} \sum_{j=1}^{J} g_{jk} \phi_{j}(x) B_{k}(t)$$

■ Find optimal parameters from data $\tau = \tau_{11}, \dots, \tau_{1n_1}, \dots, \tau_{In_l}$ with $\tau_{i1}, \dots, \tau_{in_i} | \mathbf{g} \sim \text{Poisson process} \left(\sum_{i=1}^{l} p_{ij} \sum_{k=1}^{K} g_{jk} B_k(t) \right)$

$$\hat{\mathbf{g}} = \underset{\mathbf{g} > 0}{\operatorname{argmin}} (-\log \mathcal{L}(\mathbf{g}|\boldsymbol{\tau}) + \lambda \Psi(\mathbf{g}))$$

- Expectation-Maximization "family" algorithm.
 - ML, MAP, penalized likelihood...
 - [Nichols et al., 2002, Reader et al., 2006].

Parametric modeling shortcomings

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability

probability measures

4D BNP PET

Conclusion

Open questions.

- Choice of ϕ_j and B_k (e.g voxel size) ?
- How many basis functions J and K?
- Do we trust that function of interest $G^*(x,t)$ can be expressed as $G^*(x,t) = G(x,t;\mathbf{g})$ for some $\widehat{\mathbf{g}}$
 - Do we trust in a digitized brain structure ?
 - Do Gibbs fields correspond to biological structures prior ?
- Can we give an interpretation to models with several millions (3D) or billions (4D) of parameters ?

Model selection

- Models have deep influence on inverse problem regularization.
- Models are almost never correct for real world data...
- Model selection and averaging are suitable to prevent over and under-fitting.

Parametric modeling shortcomings

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random

probability measures

4D RNP PF

. . .

Open questions.

- Choice of ϕ_j and B_k (e.g voxel size) ?
- How many basis functions J and K?
- Do we trust that function of interest $G^*(x,t)$ can be expressed as $G^*(x,t) = G(x,t;\mathbf{g})$ for some $\widehat{\mathbf{g}}$
 - Do we trust in a digitized brain structure ?
 - Do Gibbs fields correspond to biological structures prior ?
- Can we give an interpretation to models with several millions (3D) or billions (4D) of parameters ?

Model selection

- Models have deep influence on inverse problem regularization.
- Models are almost never correct for real world data...
- Model selection and averaging are suitable to prevent over and under-fitting.

Parametric modeling shortcomings

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability

3D BNP PE

4D BNP PE

Conclusion

Open questions.

- Choice of ϕ_j and B_k (e.g voxel size) ?
- How many basis functions J and K?
- Do we trust that function of interest $G^*(x,t)$ can be expressed as $G^*(x,t) = G(x,t;\mathbf{g})$ for some $\hat{\mathbf{g}}$
 - Do we trust in a digitized brain structure ?
 - Do Gibbs fields correspond to biological structures prior ?
- Can we give an interpretation to models with several millions (3D) or billions (4D) of parameters ?

Model selection

- Models have deep influence on inverse problem regularization.
- Models are almost never correct for real world data...
- Model selection and averaging are suitable to prevent over and under-fitting.

Nonparametric vs. parametric Models

Parametric models with infinitely many parameters...

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

3D BNP PET

4D BNP PET

Conclusion

Parametric models

- Characterized by a *fixed-size vector* of real-valued parameters.
- Basis functions (reconstruction grid) do not depend on data.

Nonparametric models.

- $\blacksquare \neq no$ parameter!
- The number of parameters can *grow unboundedly* with the dataset length.
- Let the data choose the appropriate complexity of the model.
- A model over *infinite dimensional* function or measure spaces.
- Side-step model selection and averaging.
- From discrete—discrete to discrete—continuous reconstruction.

Why Bayesian nonparametrics? First, why to be Bayesian...

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Motivations

BNP model

DIVE IIIOU

Random

3D BNP PET

4D BNP PET

Conclusio

Bayes' rule

$$P\left(\Theta|\mathbf{Y}\right) = \frac{P\left(\mathbf{Y}|\Theta\right)P\left(\Theta\right)}{\int_{\mathcal{S}_{\theta}} P\left(\mathbf{Y}|\theta\right)P\left(\theta\right)d\theta}$$

Prior knowledges.

- \blacksquare Statistical knowledges on objects : e.g. probability measure on $R^3\times R^+.$
- Field specific knowledges : e.g. biological, physical.
- Explicit degree of belief in priors.

"Honest" estimation.

- Whole set of solutions via posterior distribution (\neq MAP).
- → Posterior uncertainty e.g. highest probability density (HPD) interval of activity concentration for any ROI.

Why Bayesian nonparametrics? How to combine Bayes and nonparametrics?

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Motivations

RNP mode

Random probability

3D BNP PET

4D BND DET

Conclusio

Contrast with parametric priors

- Priors on infinite-dimensional objects (here probability measure)
 → stochastic processes.
- Prior give insight to correlation structure (smoothness, etc).
 - Regularization
- Solutions set *dense* in infinite-dimensional spaces.

Difficulties

- How to elicit prior \mathcal{G} for nonparametric G(x,t) ?
- How to infer on infinite dimensional objects in real life ?

Nonparametric Bayesian model for 4D PET A general framework

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Motivations

BNP model

3D BNP PET

4D BNP PET

Conclusio

Nonparametric Bayesian Poisson inverse problem framework

$$G \sim \mathcal{G}$$

$$F(\cdot, \mathbf{t}) = \int_{\mathcal{X}} \mathcal{P}(\cdot | \mathbf{x}) \ G(d\mathbf{x}, \mathbf{t})$$
 (1)

$$Y_i, T_i | F \stackrel{\text{iid}}{\sim} F$$
, for $i = 1, \ldots, n$

- $G(\cdot)$: \mathcal{G} -distributed random probability measure (RPM), defined on $(\mathcal{X} \times \mathcal{T}, \sigma(\mathcal{X}) \otimes \sigma(\mathcal{T}))$.
- Objective: estimate the posterior distribution of $G(\cdot)$ from the observed F-distributed dataset $(\mathbf{Y}, \mathbf{T})' = \{(Y_1, T_1), \dots, (Y_n, T_n)\}.$
- $\mathcal{P}(\cdot|\mathbf{x})$: given probability distribution, indexed by \mathbf{x} , defined on $(\mathcal{Y}, \sigma(\mathcal{Y}))$.

Emission Tomography context $\mathcal{X} \subseteq \mathbb{R}^3$, $\mathcal{T} \subseteq \mathbb{R}^+$.

- Y_i : index of the tube of response (TOR) and T_i : arrival time of the i^{th} observed event.
- Radon: $\mathcal{P}(\mathbf{y} = I | \mathbf{x}) \propto \delta(\langle \vec{\phi}_I, \mathbf{x} \rangle u_I)$

Interpretation of BNP modeling for PET Replacement for finite fixed size basis functions set

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

nonparametr

RNP model

Random

measures

3D BNP PET

4D BNP PET

Probability measure of annihilations events ("origins set")

- Define space-time clusters of annihilations events.
- Think about (overlapping) blobs whose number, different shapes and locations may be driven by data.
- See $G(\cdot)$ as the (nonparametric) probability distribution of clustered origins.
- E.g. voxels are replaced by data driven components.

Questions

- How to control (regularize) the number of components?
- How to introduce annihilations events?

Dirichlet process

The cornerstone of Bayesian nonparametrics [Ferguson, 1973]

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametric

Random probability

Dirichlet process

Stick-breaking

Pólya tree

4D BNP PET

Conclusion

Definition

- G_0 be a probability measure over $(\mathcal{X}, \mathcal{B})$ and $\alpha \in \mathbb{R}^{+\star}$.
- A *Dirichlet process* is the distribution of a random measure G over $(\mathcal{X}, \mathcal{B})$ s.t., for any finite partition (B_1, \ldots, B_r) of \mathcal{X} ,

$$(G(B_1), \ldots, G(B_r)) \sim Dir(\alpha G_0(B_1), \ldots, \alpha G_0(B_r))$$

- lacksquare G_0 is the mean distribution, α the concentration parameter.
- We write $G \sim \mathsf{DP}(\alpha, G_0)$.

Representations of Dirichlet processes

- Pólya urns (DP arises here as the De Finetti measure of the *exchangeable* sequence).
- Stick-breaking representation (constructive).
- Chinese restaurant (prior over partitions).

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

Dirichlet process

Chinese restaurant

Stick-breaking

Pólva tree

3D BNP PET

4D BNP PET

Conclusio

Figure: Assignment probability for customer 1.

- $X_n = X_1, ..., X_n$ take on K < n distinct values $\theta_1, ..., \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k.
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

Chinese restaurant process A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

Chinese restaurant

Stick-breaking

Dirichlet mi: Pólya tree

3D BNP PET

4D BNP PET

Conclusio

Figure: Table draw for customer 1.

- $X_n = X_1, ..., X_n$ take on K < n distinct values $\theta_1, ..., \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k.
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Probability Probability

measures

Chinese restaurant

Stick-breaking

Pólva tree

3D BNP PET

4D BNP PET

Conclusio

Figure: Assignment probability for customer 2.

- **X**_n = X_1, \ldots, X_n take on K < n distinct values $\theta_1, \ldots, \theta_K$.
- This defines a partition of $\{1, \ldots, n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

Dirichlet proce

Chinese restaurant Stick-breaking

Dirichlet mixture

Pólya tree
3D BNP PET

4D BNP PET

Conclusio

Figure: Table draw for customer 2.

- $X_n = X_1, ..., X_n$ take on K < n distinct values $\theta_1, ..., \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Chinese restaurant

Stick-breaking

Pólva tree

3D BNP PET

4D BNP PET

Figure: Assignment probability for customer 3.

- $\mathbf{X}_n = X_1, \dots, X_n$ take on K < n distinct values $\theta_1, \dots, \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. ibelongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

Dirichlet proces

Chinese restaurant Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Conclusio

Figure: Table draw for customer 3.

- $X_n = X_1, ..., X_n$ take on K < n distinct values $\theta_1, ..., \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

measures

Chinese restaurant

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Assignment probability for customer 4.

- **X**_n = X_1, \ldots, X_n take on K < n distinct values $\theta_1, \ldots, \theta_K$.
- This defines a partition of $\{1, \ldots, n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

Dirichlet proce

Chinese restaurant Stick-breaking

Dirichlet mixt

3D BNP PET

4D BNP PET

Conclusio

Figure: Table draw for customer 4.

- **X**_n = X_1, \dots, X_n take on K < n distinct values $\theta_1, \dots, \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

Chinese restaurant process A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

measures

Chinese restaurant

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PE

Figure: Assignment probability for customer 5.

- **X**_n = X_1, \dots, X_n take on K < n distinct values $\theta_1, \dots, \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

Dirichlet proce

Chinese restaurant

Stick-breaking

Polya tree

3D BNP PET

4D BNP PET

Conclusion

Figure: Table draw for customer 5.

- $X_n = X_1, ..., X_n$ take on K < n distinct values $\theta_1, ..., \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. i belongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

A worthy allegory for partition prior construction.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Chinese restaurant

Stick-breaking

Pólva tree

3D BNP PET

Figure: Assignment probability for customer 6.

- $\mathbf{X}_n = X_1, \dots, X_n$ take on K < n distinct values $\theta_1, \dots, \theta_K$.
- This defines a partition of $\{1, ..., n\}$ into K clusters, s.t. ibelongs to cluster k iff $X_i = \theta_k$.
- Sequentially generating from a CRP
 - First customer sits at table 1 and order $\theta_1 \sim G_0$.
 - Customer n+1 sits at:
 - Table k with probability $\frac{n_k}{n+\alpha}$ with n_k the number of customers at table k
 - A new table K+1 with probability $\frac{\alpha}{n+\alpha}$ and order $\theta_{K+1} \sim G_0$

Chinese restaurant process Clustering behaviour ($\alpha = 30$).

Éric Barat

Nonparametric vs. parametric models

nonparametrics

probability measures

Chinese restau

Chinese restaurant Stick-breaking

Dirichlet mixtu Pólya tree

3D BNP P

4D BNP PET

- The CRP exhibits the clustering property of the DP.
 - Expected number of clusters $K = O(\alpha \log n)$.
 - lacktriangleright Rich-gets-richer effect ightarrow Reinforcement (small number of large clusters).
 - E.g.: Ewens sampling formula, species sampling.

Stick-breaking representation

Constructive definition, [Sethuraman, 1994

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Stick-breaking

Pólva tree

4D BNP PET

Stick-breaking representation.

$$m{\theta} = (\theta_1, \theta_2, \ldots) \stackrel{\mathsf{iid}}{\sim} G_0$$

$$\mathbf{V} = (V_1, V_2, \ldots) \stackrel{\mathsf{iid}}{\sim} \mathsf{Beta}(1, \alpha)$$

$$\mathbf{p} = (p_1, p_2, \ldots)$$
, s.t. $p_1 = V_1$ and $p_k = V_k \prod_{i=1}^{k-1} (1 - V_i)$.

■ Then.

$$G\left(\cdot\right)\triangleq\sum_{k=1}^{\infty}p_{k}\,\delta_{\theta_{k}}\left(\cdot\right)$$

is a DP (α, G_0) -distributed random probability distribution.

- We say that: $\mathbf{p} \sim \mathsf{GEM}(\alpha)$.
- Almost sure truncation, [Ishwaran and James, 2001]: $\mathcal{P}_{N}(\cdot) = \sum_{k=1}^{N} p_{k} \, \delta_{\theta_{k}}(\cdot)$ with $V_{N} = 1$ converges a.s. to a $DP(\alpha G_0)$ random probability measure.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability

Dirichlet proce

.

Stick-breaking

Dirichlet mixtu

Pólya tree

3D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

probability

Dirichlet proce

Chinara rarta

Stick-breaking

Dirichlet mixtu Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability

Dirichlet proce

CI.

Stick-breaking

Dirichlet mixtur

Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability

Dirichlet proce

.

Stick-breaking

Dirichlet mixtu

Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proce

.

Stick-breaking

Dirichlet mixtu Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability

Dirichlet proce

CI.

Stick-breaking

Dirichlet mixtu Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proce

.

Stick-breaking

Dirichlet mixtu Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability

Dirichlet proce

.

Stick-breaking

Dirichlet mixtu

Pólya tree

3D BNP PET

4D BNP PET

Figure: Dirichlet process GEM construction ($\alpha = 3$, $G_0 = \mathcal{N}(0,1)$).

Dirichlet process mixtures Continuous data modeling

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

nonparametrics

Random probability

Dirichlet proce

Chinese resta

Stick-breaking

Dirichlet mixtures

Pólva tree

00 0111 1 1

4D BNP PET

Conclusio

Discreteness of $DP(\alpha, G_0)$ generated measures

- Cannot be used for probability density functions estimation !
- \blacksquare \rightarrow Hierarchical mixture model with continuous distribution ϕ .
- Hierarchical data model

$$Y_i|X_i \sim \phi(Y_i|X_i)$$

 $X_i \sim H(\cdot)$
 $H \sim \mathsf{DP}(\alpha, G_0)$

Data distribution

$$y|H \sim \sum_{k=1}^{\infty} p_k \, \phi(y|\theta_k) = G(y)$$

■ E.g.: Dirichlet mixture of Normals with G_0 taken as Normal-Inverse Wishart, s.t. $\theta_k = (\mu_k, \Sigma_k)$.

Posterior sampling of DPM Specific random schemes

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

probability measures

Chinese restaur

Stick-breaking

Dirichlet mixtures

3D RNP PI

4D BNP PET

- How to infer on infinite dimensional objects in a real world (and in a decent time) ?
- Sampling from the posterior: specific MCMC techniques.
 - Integrate out the random distribution: [Escobar, 1994],
 [Mac Eachern and Müller, 1998], [Neal, 2000].
 - side-step infiniteness by marginalization, only the allocation to occupied clusters (finite number) is sampled (Pólya Urn scheme).
 - ullet Collapsing o good mixing properties.
 - Gives only access to sequences generated from the RPM.
 - Almost sure truncation: [Ishwaran and James, 2001].
 - Easy implementation.
 - Slice sampling: [Walker, 2007], [Kalli et al., 2011].
 - Conditional approach: inference retains whole distribution.
 - Use of auxiliary variables: only a finite pool of atoms are involved at each iteration. without truncation.
 - Gives access to posterior of any functional of the RPM (mean, variance, credible intervals, etc.).
- Variational techniques: [Blei and Jordan, 2006].

Pólya tree process

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

measures

Dirichlet proc

Chinese restauran Stick-breaking

Pólva tree

3D BNP PE

4D BNP PET

Conclusio

Definition

Let $E=\{0,1\}$, $E^m=E\times\cdots\times E$ and $E^*=\cup_{m=0}^\infty E^m$. Let $\pi_m=\{B_\epsilon:\epsilon\in E^m\}$ be a partition of $\mathcal T$ and $\Pi=\cup_{m=0}^\infty \pi_m$. A probability distribution Q on $\mathcal T$ has a Pólya tree distribution $\operatorname{PT}(\Pi,\mathcal A)$ if there are nonnegative numbers $\mathcal A=\{\alpha_\epsilon:\epsilon\in E^*\}$ and r.v. $\mathcal W=\{W_\epsilon:\epsilon\in E^*\}$ s.t.

- lacksquare $\mathcal W$ is a sequence of independent random variables,
- for all ϵ in E^* , $W_{\epsilon} \sim \text{Beta}(\alpha_{\epsilon 0}, \alpha_{\epsilon 1})$, and
- \blacksquare for all integer m and $\epsilon = \epsilon_1 \cdots \epsilon_m$ in E^m ,

$$Q(B_{\epsilon_1\cdots\epsilon_m}) = \prod_{\substack{j=1\\\epsilon_j=0}}^m W_{\epsilon_1\cdots\epsilon_{j-1}} \times \prod_{\substack{j=1\\\epsilon_j=1}}^m (1 - W_{\epsilon_1\cdots\epsilon_{j-1}})$$

Note that for $\epsilon \in E^*$, $W_{\epsilon 0} = Q(B_{\epsilon 0}|B_{\epsilon})$

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proce

Chinese restau Stick-breaking

Dirichlet mixtu

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction (normal mean).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability measures

Dirichlet proce

Chinese resta

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability measures

Dirichlet proce

Critical Critical

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

попрагатнест

Random

Dirichlet proce

Chinese resta

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proc

Chinese resta

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability measures

Dirichlet proce

Chinese restau

Stick-breaking

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proce

Chinese restau Stick-breaking

Dirichlet mixt

Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random

Dirichlet proce

Stick-breaking

Dirichlet mixt Pólya tree

3D BNP PET

4D BNP PET

Figure: Pólya tree sequence construction ($\mathcal{A} = \{\alpha_m = 3^m\}$).

Spatial hierarchical model for PET data DPM of latent emission locations

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

3D BNP PET

Gibbs sampler

4D BNP PE

Conclusion

Spatial hierarchical model

$$Y_{i}|X_{i} \stackrel{\text{ind}}{\sim} \mathcal{P}(Y_{i}|X_{i})$$

$$X_{i}|Z_{i} \stackrel{\text{ind}}{\sim} \mathcal{N}(X_{i}|Z_{i})$$

$$Z_{i}|H \stackrel{\text{iid}}{\sim} H$$

$$H \sim \mathsf{DP}(\alpha, \mathcal{N}\mathcal{I}\mathcal{W})$$
(2)

Remarks

- Tomography: Only Y_i is observed, thus X_i (the emission location) is introduced as latent variable (origin).
- In EM approach, latent variables are the number of emissions from voxel *v* which are recorded in line of response *l*.
- Compared to BNP density estimation, PET reconstruction mainly involves a sampling step from conditional $(X_i|Y_i, \mathbf{p}, \theta)$.
- Spatial distribution: $G(\cdot) = \int_{\Omega} \mathcal{N}(\cdot|\theta) H(d\theta) = \sum_{k=1}^{\infty} p_k \mathcal{N}(\cdot|\theta_k)$.

Inference by Gibbs sampling Sampling from conditional distributions

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametric

Random

measures

BNP model

Gibbs sampler

Results

4D BNP PE

Conclus

Sampling from the posterior

- Let introduce $\mathbf{C} = C_1, C_2, \dots, C_n$, the classification of emissions to DP components s.t. $\mathbf{Z}_i = \theta_{C_i}$ for all i < n.
- Let $\mathbf{u} = u_1, u_2, \dots, u_n$ uniform auxiliary variables.
- Successively draw samples from the following conditionals

Annihilation location :

 $(X|Y,p,\theta,u)$

DPM component parameters :

 $(\theta|\mathsf{C},\mathsf{X})$

Emission allocation to DP atoms :

 $(C|p, \theta, X, u)$

DP weights & auxiliary variables :

(p, u|C)

Sampling $X|Y,p,\theta,u$: Metropolis (independent MH) within Gibbs

- $(X_i|Y_i,\mathbf{p},\theta,\mathbf{u}) \stackrel{\propto}{\sim} \mathcal{P}(Y_i|X_i) G(X_i|\mathbf{p},\theta,\mathbf{u})$
- $\mathcal{P}(Y_i|X_i)$ accounts for physical and geometrical properties of PET system \rightarrow no hope for conjugacy...
- Candidate: $X_i^{\star}|Y_i, \mathbf{p}, \theta, \mathbf{u} \stackrel{\propto}{\sim} \mathcal{N}(X_i^{\star}|\mu_{Y_i}, \Sigma_{Y_i}) G(X_i^{\star}|\mathbf{p}, \theta, \mathbf{u})$

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

nonparametrics

Random probability measures

3D BNP PET BNP model

Gibbs sampler

Results

4D BNP PET

Conclusion

Iteration k, $(\mathbf{p}, \mathbf{u}|\mathbf{C})$, $(\boldsymbol{\theta}|\mathbf{C}, \mathbf{X})$

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

probability measures

3D BNP PET BNP model

Gibbs sampler

Results

4D BNP PET

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random

probability measures

3D BNP PET BNP model

Gibbs sampler

Rosults

4D BNP PET

Back-projection $X_i | Y_i$, \mathbf{p} , \mathbf{u} , $\boldsymbol{\theta}$

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random

probability

3D BNP PET BNP model

Gibbs sampler

4D BNP PET

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random

probability measures

3D BNP PET BNP model

Gibbs sampler

4D BNP PET

Back-projection $X_{i+1}|Y_{i+1}$, \mathbf{p} , \mathbf{u} , $\boldsymbol{\theta}$

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random

probability measures

3D BNP PET BNP model

Gibbs sampler

4D BNP PET

Back-projections X|Y, p, u, θ

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability

measures
3D BNP PET

BNP model

Gibbs sampler

4D BNP PET

Cluster allocations $C|\theta$, p, u, X

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability

3D BNP PET

BNP model

Gibbs sampler

Results

4D BNP PET

Iteration k + 1, $(\mathbf{p}, \mathbf{u}|\mathbf{C})$, $(\boldsymbol{\theta}|\mathbf{C}, \mathbf{X})$

Synthetic data

Phan

MAP

True coincidences from a realistic digital phantom

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametri

Random probability measures

3D BNP PET BNP model Gibbs sampler

Results
4D BNP PET

Posterior uncertainty Statistical coverage

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

3D BNP PET BNP model Gibbs sampler

Results
4D BNP PET

Figure: 20% decreased uptake in left putamen concentration (red) vs. right putamen (blue) for 20 replicas and 2 dataset lengths. Concentration = (total activity on volume V)/V

Dynamic PET Data

Tissue kinetics: time dependency

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

3D BNP PET

4D modeling

Results

Conclusio

Modeling metabolic activity

- Biokinetic: tissue dependent.
- Functional volume (FV): spatial region characterized by a particular kinetic.
- Radioactive decay.

Separable space-time activity distribution

$$G(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^{\infty} p_k \mathcal{N}(\mathbf{x} | \theta_k) \widetilde{Q}_k(\mathbf{t})$$

Kinetics RPM

- Each event Y_i is time stamped (T_i) .
- Continuous measure with compact support (right truncation).

Hierarchical space-time model for dynamic PET data Dependent DPM of Pólya trees

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability measures

3D BNP PET

4D BNP PET 4D modeling

4D PET Gibbs sampler

Conclusion

Space-time hierarchical model

$$egin{aligned} Y_i | X_i \stackrel{ ext{ind}}{\sim} \mathcal{P}\left(Y_i | X_i
ight) \ X_i, \, T_i | Z_i, \, Q_i \stackrel{ ext{ind}}{\sim} \mathcal{N}\left(X_i | Z_i
ight) imes Q_i\left(T_i
ight) \ Z_i, \, Q_i | H \stackrel{ ext{iid}}{\sim} H \ H \sim \mathsf{DP}\left(lpha, \mathcal{N}\mathcal{T}\mathcal{W} imes \mathcal{K}_0
ight) \ \mathcal{K}_0 \sim \mathsf{DP}\left(eta, \mathsf{PT}\left(\mathcal{A}, \, Q_0
ight)
ight) \end{aligned}$$

- With $H = \sum_{k=1}^{\infty} w_k \, \delta_{\theta_k} \, \widetilde{Q}_{\ell}$, where $\widetilde{\mathbf{Q}}$ are i.i.d. \mathcal{K}_0
- $\mathcal{K}_0 = \sum_{j=1}^{\infty} \pi_j \, \delta_{Q_j^*}$ with $\pi \sim \mathsf{GEM}(\beta)$, \mathbf{Q}^* are i.i.d. $\mathsf{PT}(\mathcal{A}, Q_0)$, a Pólya tree with parameters \mathcal{A} and mean Q_0 .
- \mathcal{K}_0 : DP process with PT process as base distribution \rightarrow nested RPM (cf. nested DP, [Rodriguez et al., 2008])
- Distinct θ_k may share the same Q_j^* (\mathcal{K}_0 is discrete) \to partial Hierarchical DP [Teh et al., 2006]; (diffuse $\mathcal{N}\mathcal{I}\mathcal{W} \times \mathcal{K}_0$).

Gibbs sampler for dynamic PET Hierachical clustering

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian

Random probability

20 0410 0

4D BNP PE

4D modeling

sampler

Conclusio

Additional latent variables

- Allocation variable: $D_k = j$ iff $\widetilde{Q}_k = Q_j^*$ (kinetics clustering).
- Auxiliary variables **v** for slice sampling of \mathcal{K}_0 .

Posterior computations

■ Gibbs sampling of additional conditionals is straightforward.

Functional volumes distribution

■ For all j (label of \mathcal{K}_0 atoms),

$$\mathsf{FV}_{j}\left(\mathbf{x}\right) = \sum_{k:\;\widetilde{Q}_{k} = Q_{k}^{*}} p_{k} \, \mathcal{N}\left(\mathbf{x} \middle| \theta_{k}\right)$$

4D synthetic data Application and results

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability measures

3D BNP PET

4D DND DET

4D modeling 4D PET Gibbs

Results

Conclusion

Data generation (FDG tracer)

- 4 FV : gray matter, white matter, cerebellum, tumors.
- Blood pool and blood fraction in tisssues (5% to 10%).
- $n = 10^7$ events ($\approx \frac{1}{10}$ usual dose for 4D PET).
- Same 3D phantom.

4D synthetic data Estimated kinetics and functional volumes

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametric

Random probability measures

3D BNP PET

4D BNP PET 4D modeling 4D PET Gibbs

sampler Results

4D clinical data Comparison with ML-EM + post-smoothing

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

probability

3D BNP PET

4D modeling 4D PET Gibbs

Results

Cardiac data

- Biograph scanner, bone metabolism tracer, evaluation of potential interest in cardiology.
- BNP : dose ÷30; EM+smoothing : dose ÷1
- $\Delta T = 11$ min, sharp kinetic during first minute.

Figure: up: EM $(\div 1)$; bottom: BNP $(\div 30)$

Conclusion and perspectives.

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

Bayesian nonparametrics

Random probability

3D RNP P

4D BNP PET

Conclusion

Some observations...

- Suitable nonparametric framework for discrete-continous 3D/4D PET.
- Flexible data modeling : hierarchical, dependent, etc.
- From low level data to high level structures in a unified framework.
- Access to posterior intervals (uncertainty).
- Sampling schemes have to be carefully considered.

...and perspectives

- Prior refinements.
- Computing architecture consistent with MCMC approach.

For Further Reading. I

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

nonnarametri

Random

3D BNP PET

4D BNP PET

Conclusion

Blei, D. M. and Jordan, M. I. (2006).

Variational inference for dirichlet process mixtures. Bayesian Analysis, 1(1):121–144.

Escobar, M. D. (1994).

Estimating normal means with a dirichlet process prior. J. Am. Stat. Assoc., 89:268–277.

Ferguson, T. S. (1973).

A bayesian analysis of some nonparametric problems. *Ann. Statist.*, 1:209–230.

Ghosh, J. K. and Ramamoorthi, R. V. (2003).

Bayesian Nonparametrics.
Springer.

Green, P. J. (1990).

Bayesian reconstructions from emission tomography data using a modified EM algorithm. $\ \ \, \Box$

IEEE Trans. Med. Imaging, 9(1):84-93.

Hjort, N. L., Holmes, C., Müller, P., Walker, S. G., Ghosal, S., Lijoi, A., Prünster, I., Teh, Y. W., Jordan, M. I., Griffin, J., Dunson, D. B., and Quintana, F. (2010). *Bayesian Nonparametrics*.

Cambridge Series in Statistical and Probabilistic Mathematics.

For Further Reading. II

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

probability

3D BNP PET

4D BNP PET

Conclusion

Ishwaran, H. and James, L. F. (2001).

Gibbs sampling methods for stick-breaking priors.

J. Am. Stat. Assoc., 96:161-173.

Kalli, M., Griffin, J. E., and Walker, S. G. (2011). Slice sampling mixture models.

Statistics and Computing, 21(1):93–105.

Mac Eachern, S. N. and Müller, P. (1998).

Estimating mixture of dirichlet process models. J. Comput. Graph. Stat., 7:223-238.

Neal, R. M. (2000).

Markov chain sampling methods for dirichlet process mixture models.

J. Comput. Graph. Stat., 9(2):249-265.

Nichols, T. E., Qi, J., Asma, E., Member, S., Leahy, R. M., and Member, S. (2002). Spatiotemporal reconstruction of list-mode pet data.

IEEE Trans. Med. Imag, 21:396-404.

Pitman, J. (2006).

Combinatorial stochastic processes.

Technical Report 621, Dept. Statistics, U.C. Berkeley.

For Further Reading. III

BNP for dynamical PET reconstruction

Éric Barat

Nonparametric vs. parametric models

nonparametric

Random

3D BNP PET

4D BNP PET

Conclusion

Ē

Reader, A., Sureau, F., Comtat, C., Trébossen, R., and Buvat, I. (2006).

Joint estimation of dynamic PET images and temporal basis functions using fully 4D ML-EM.

Physics in Medicine and Biology, 51(21):5455-5474.

Rodriguez, A., Dunson, D. B., and Gelfand, A. E. (2008).

The nested dirichlet process.

J. Am. Stat. Assoc., 103:1131–1154.

Sethuraman, J. (1994).

A constructive definition of Dirichlet priors.

Stat. Sinica, 4:639-650.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006).

Hierarchical Dirichlet processes.

J. Am. Stat. Assoc., 101(476):1566-1581.

Vardi, Y., Shepp, L., and Kaufman, L. (1985).

A statistical model for Positron Emission Tomography.

J. Am. Stat. Assoc., 80:8–20.

Walker, S. G. (2007).

Sampling the Dirichlet mixture model with slices.

Comm. Statist., 36:45-54.

