Belief Propagation Reconstruction for Discrete X-ray Tomography

Emmanuelle Gouillart Joint unit CNRS/Saint-Gobain Surface of Glass and Interfaces

Florent Krzakala (ESPCI), Marc Mézard (ENS Paris), Lenka Zdeborova (IPhT)

SAINT-GOBAIN

- ESRF team : Elodie Boller, Alessandro Mirone, Paul Tafforeau, Alexander Rack
- algorithms : Emilie Chouzenoux, Hugues Talbot, Gaël Varoquaux
- binary data : David Bouttes, Damien Vandembroucq
- funding : ESRF, Agence Nationale de la Recherche (EDDAM project)

Tomographic reconstruction : an inverse problem

Projections of the sample along several directions

Tomographic reconstruction : an inverse problem

Projections of the sample along several directions

> $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{w}$ $\mathbf{y} \in \mathbb{R}^{M}, \mathbf{x} \in \mathbb{R}^{N}$ w : noise $\alpha = \frac{M}{N}$ α : undersampling rate

We want to find x knowing A and y

In-situ tomography : image fast transformations

David Bouttes, Damien Vandembroucq (PMMH) coarsening in phase-separated glasses at high temperature

Problems for degraded acquisition

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise

 $\mathbf{y} = \mathbf{A} \mathbf{x} + \mathbf{w}$: undetermined / ill-conditioned system \rightarrow a subspace of $A^{\mathsf{T}}A$ is wrongly reconstructed

Problems for degraded acquisition

Courtesy David Bouttes

ex-situin-situ : less measurements, more noise $\mathbf{y} = \mathbf{A} \mathbf{x} + \mathbf{w}$: undetermined / ill-conditioned system \rightarrow a subspace of $A^T A$ is wrongly reconstructedCan we use additional constraints to improve the reconstruction ?

Problems for degraded acquisition

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise

Can we use additional constraints to improve the reconstruction? Idea : require the solution **x** to be a **binary image**

a $\mathbf{x} \in [0, 1]^N$ (after normalization)

spatial regularity (domains)

Bayesian formulation of the reconstruction problem

Probabilistic formulation of the inverse problem.

 $\mathcal{P}(\mathbf{x}|\mathbf{y}) \propto \mathcal{P}(\mathbf{y}|\mathbf{x}) \mathcal{P}(\mathbf{x})$ (\star)

Forward model "Posterior" Quantity of interest Tomo geometry

Binary prior Expectations on x

Several approaches to reconstruct \mathbf{x}

 $\mathbf{P}(\mathbf{x}|\mathbf{y}) \rightarrow \text{expectation of } x_i$

or compute the **maximum a posteriori** (MAP) $\operatorname{argmax}_{\mathcal{P}}(\mathbf{x}|\mathbf{y})$

 \Rightarrow solve an optimization problem

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \beta \mathbf{TV}(\mathbf{x}) + \mathcal{I}\left([0, 1]^{N}\right)$$

•
$$\mathbf{TV}(\mathbf{x}) = \sum_{i} \| (\nabla \mathbf{x})_{i} \|_{2} = \sum_{i} \sqrt{(\partial_{1} \mathbf{x}_{i})^{2} + (\partial_{2} \mathbf{x}_{i})^{2}}$$

total variation

penalization of gradients \rightarrow piecewise constant images $\mathcal{I}([0,1]^N)$: convex relaxation of $\mathcal{I}(\{0,1\}^N)$

- Non-smooth convex optimization : iterative method to find the solution
 - Numerous studies of TV regularization for tomography : [Sidky & Pan, Tang2009, Jia2010]
 - Now available at the ESRF synchrotron
 - Other kinds of spatial regularization may be used (non-convex)

 $\mathbf{x} \in \{-1,1\}^n + ext{domains}$ $\mathcal{P}(\mathbf{x})$: lsing model (Markov random field)

Neighboring pixels more likely to have the same value :

$$egin{array}{lll} \mathcal{P}({f x}) &\propto & e^{\sum_{\langle i,j
angle} J_{ij}\delta_{x_i,x_j}} \ &\propto & \prod_\mu e^{\sum_{\langle ij
angle\in\mu} J_\mu\delta_{x_i,x_j}} \end{array}$$

(factorization along light rays μ)

Probabilistic approach : binary model

 $\mathbf{x} \in \{-1, 1\}^n + ext{domains}$ $\mathcal{P}(\mathbf{x})$: Ising model (Markov random field)

$$egin{array}{lll} \mathcal{P}({f x}) & \propto & e^{\sum_{\langle i,j
angle} J_{ij}\delta_{x_i,x_j}} \ & \propto & \prod_\mu e^{\sum_{\langle ij
angle \in \mu} J_\mu\delta_{x_i,x_j}} \end{array}$$

(factorization along light rays μ)

Posterior distribution

$$\mathcal{P}(\mathbf{x}|\mathbf{y}) = rac{1}{Z} \prod_{\mu=1}^{M} \left[\delta \left(y_{\mu} - \sum_{i \in \mu} x_i
ight) e^{J_{\mu} \sum_{(ij) \in \mu} \delta_{x_i, x_j}}
ight]$$

A product of factors involving different subsets of pixels

An intractable combinatorial problem

How to compute the marginals of pixel values $\mathcal{P}(x_i)$?

$$\mathcal{P}(\mathbf{x}_i) = \sum_{\mathbf{x}' \in \{-1,1\}^N; \mathbf{x}'_i = \mathbf{x}_i} \mathcal{P}(\mathbf{x}'|\mathbf{y})$$

Sampling $\mathcal{P}(\mathbf{x}|\mathbf{y})$ over 2^N images is not possible! $(N \sim 10^5 - 10^6)$

- Gibbs sampling [Liao & Herman] : slow for large images
- Can the expression of the marginal be simplified, using the graph structure? (ex : using graph cuts for segmentation)

An intractable combinatorial problem

How to compute the marginals of pixel values $\mathcal{P}(x_i)$?

$$\mathcal{P}(\mathbf{x}_i) = \sum_{\mathbf{x}' \in \{-1,1\}^N; \mathbf{x}'_i = \mathbf{x}_i} \mathcal{P}(\mathbf{x}'|\mathbf{y})$$

Sampling $\mathcal{P}(\mathbf{x}|\mathbf{y})$ over 2^N images is not possible! $(N \sim 10^5 - 10^6)$

- Gibbs sampling [Liao & Herman] : slow for large images
- Can the expression of the marginal be simplified, using the graph structure? (ex : using graph cuts for segmentation)

Use belief propagation

What is belief propagation?

A recursive technique for **statistical inference** on **factor graphs** (e.g. Bayesian networks, Markov random fields)

- Different names for related ideas : belief propagation [Pearl 82], sum-product [Gallager 62, LDPC codes], (approximate) message passing, ...
- Factor the computation of marginals of variables as a function of other marginals (supposed to be known).
- Exact and fast on trees
- Often a good approximation on other factor graphs
- Applications : error correcting codes (LDPC), satisfiability, computer vision, ...

Factor graph : bipartite graph of variables (pixels) and (probability) factors

 $\tilde{m}_{\mu \to i}(x_i)$: marginal of the variable x_i in absence of all constraints but μ .

 $\tilde{m}_{\mu \to i}(x_i)$: marginal of the variable x_i in absence of all constraints but μ .

 $m_{j \rightarrow \nu}(x_j)$: marginal of the variable x_j in absence of constraint ν

 $m_{j \rightarrow \nu}(x_j)$: marginal of the variable x_j in absence of constraint ν

exact for a tree, not for a generic factor graph

$ilde{m}_{\mu ightarrow i}(x_i) \propto \sum_{x_j: j \in \mu eq i} \mathcal{P}_{\mu}(\{x_j\}, x_i) \prod_{j \in \mu eq i} m_{j ightarrow \mu}(x_j)$

Belief propagation : iterate to solve fixed-point equations

$$m_{j
ightarrow
u}(x_j) \propto \prod_{\mu \in j
eq
u} ilde{m}_{\mu
ightarrow j}(x_j)$$

$$ilde{m}_{\mu
ightarrow i}(x_i) \propto \sum_{x_j: j \in \mu
eq i} \mathcal{P}_{\mu}(\{x_j\}, x_i) \prod_{j \in \mu
eq i} m_{j
ightarrow \mu}(x_j)$$

Belief propagation : iterate to solve fixed-point equations

$$m_{j
ightarrow
u}(x_j) \propto \prod_{\mu \in j
eq
u} ilde{m}_{\mu
ightarrow j}(x_j)$$

$$ilde{m}_{\mu
ightarrow i}(x_i) \propto \sum_{x_j; j \in \mu
eq i} \mathcal{P}_{\mu}(\{x_j\}, x_i) \prod_{j \in \mu
eq i} m_{j
ightarrow \mu}(x_j)$$

Trees : convergence to exact marginals [Pearl 82]

Generic graphs : "loopy" belief propagation [Murphy 99]. Convergence not guaranteed; computes approximation of marginals. May work very well even for images (very loopy graphs!)

Belief propagation for binary tomography

Belief propagation for binary tomography

factor nodes $\mu = 1, \dots, M$

$$ilde{m}_{\mu o i}(x_i) \propto \sum_{x_j: j \in \mu
eq i} \delta(y_\mu - \sum_{j \in \mu} x_j) \quad e^{J_\mu \sum_{(jk) \in \mu} x_j x_k} \times \prod_{j \in \mu
eq i} m_{j o \mu}(x_j)$$

 2^{L} terms, $L \sim \sqrt{N} \otimes ...$ BP works well for small number of variables / factor

Trick : use BP within BP !

Some formula massaging...

$$x_i = \pm 1 \rightarrow m_{i \rightarrow \mu}(x_i) \propto e^{x_i h_{i \rightarrow \mu}}$$

$$\begin{split} \tilde{m}_{\mu \to i}(x_i) &\propto \sum_{x_j; j \in \mu \neq i} \delta(y_\mu - \sum_{j \in \mu} x_j) e^{J_\mu \sum_{(jk) \in \mu} x_j x_k} \prod_{j \in \mu \neq i} m_{j \to \mu}(x_j) \\ &\propto \sum_{x_j; j \in \mu \neq i} \delta(y_\mu - \sum_{j \in \mu} x_j) e^{J_\mu \sum_{(jk) \in \mu} x_j x_k + \sum_{j \in \mu \neq i} x_j h_{j \to \mu}} \,. \end{split}$$

and a trick...

Replace the δ by a Lagrange multiplier (canonical formulation)

$$ilde{m}_{\mu
ightarrow i}(x_i) \propto \sum_{x_j: j \in \mu
eq i} e^{H \sum_i x_i + J_\mu \sum_{(jk) \in \mu} x_j x_k + \sum_{j \in \mu
eq i} x_j h_{j
ightarrow \mu}}$$

(several iterations to find H)

$$ilde{m}_{\mu
ightarrow i}(x_i) \propto \sum_{x_j: j \in \mu
eq i} e^{H \sum_i x_i + J_\mu \sum_{(jk) \in \mu} x_j x_k + \sum_{j \in \mu
eq i} x_j h_{j
ightarrow \mu}}$$

probability of a configuration : product of factors w/ 1 or 2 variables

 \Rightarrow apply BP on a chain (easy)

Code: https://github.com/eddam/bp-for-tomo

Convergence of the algorithm : it works !

Noisefree measures + perfect model : perfect recovery possible

synthetic data no noise, different $\boldsymbol{\alpha}$

Fast convergence when α large (enough measurements)

Convergence slows down when the undersampling rate α decreases (less measurements)

In No convergence above critical α (convergence time diverges)

Convergence of the algorithm : it works !

Noisefree measures + perfect model : perfect recovery possible

synthetic data no noise, different $\boldsymbol{\alpha}$

- Fast convergence when α large (enough measurements)
- Convergence slows down when the undersampling rate α decreases (less measurements)
- In No convergence above critical α (convergence time diverges)

What is value of the critical α ?

Measuring the gradient-sparsity of images

Measuring the sparsity of the images

Compute the density of 1-pixel wide boundaries

 $\rho = \frac{\# \text{ of pixels on boundaries}}{\# \text{ of searched-for pixels}}$

Measuring the gradient-sparsity of images

 $\rho = 0.05$

 $\rho = 0.09$

 $\rho = 0.17$

Phase diagram of noisefree recovery

E. Gouillart et al., Inverse Problems, March 2013

Good robustness to noise (i.i.d. additive Gaussian noise)

Compare BP-tomo with TV regularization, for

- \blacksquare different undersampling α
- **a** different values of the noise σ

fraction of errors vs. noise amplitude

A sharp transition with the undersampling rate

For a given level of noise, choose α not too close to the transition (in applications : trade-off measurements / noise)

Mean-field approximation to reduce memory cost

$$\# \{ \tilde{m}_{\mu \to i}, m_{i \to \mu} \} = 2 N n_{\theta} \propto N^{3/2}$$

"Mean-field" approximation

$$m_{i
ightarrow \mu} = \sum_{
u \in i
eq \mu} ilde{m}_{
u
ightarrow i}$$

by

Replace

$$m_i = \frac{\#\{\nu \in i\} - 1}{\#\{\nu \in i\}} \sum_{\nu \in i} \tilde{m}_{\nu \to i}$$

 $\tilde{m}_{\nu \to i}$ temporary variables computed when solving the Ising chains, but not kept in memory

Mean-field approximation to reduce memory cost

very low noise : slight degradation

moderate noise : same result, or slight improvement

- Belief-propagation : an interesting algorithm to compute expectations for combinatorial problems described by a factor graph
 - Tomography : impressive performance on synthetic binary data
 - \bullet Sharp transition with undersampling rate α : stay far from critical α

Next steps

- Test with real data : prior model not perfect, forward model also not perfect... How robust is the algorithm ?
- More colors : three, fours, ... phases

Bibliography I

- Robert Gallager, Low-density parity-check codes, Information Theory, IRE Transactions on 8 (1962), no. 1, 21–28.
- X. Jia, Y. Lou, R. Li, W.Y. Song, and S.B. Jiang, Gpu-based fast cone beam ct reconstruction from undersampled and noisy projection data via total variation, Medical physics 37 (2010), 1757.
- Kevin P Murphy, Yair Weiss, and Michael I Jordan, Loopy belief propagation for approximate inference : An empirical study, Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., 1999, pp. 467–475.

Bibliography II

- Judea Pearl, Reverend bayes on inference engines : A distributed hierarchical approach, Cognitive Systems Laboratory, School of Engineering and Applied Science, University of California, Los Angeles, 1982.
- E.Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in medicine and biology 53 (2008), 4777.
- J. Tang, B.E. Nett, and G.H. Chen, **Performance** comparison between total variation (tv)-based compressed sensing and statistical iterative reconstruction algorithms, Physics in Medicine and Biology **54** (2009), 5781.