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Tomographic reconstruction : an inverse problem

Projections of the sample

along several directions




Tomographic reconstruction : an inverse problem

Projections of the sample

along several directions
y=Ax+w

yecR” xeRN
W : noise

a=—

N

« : undersampling rate

We want to find x knowing A and y



In-situ tomography : image fast transformations

David Bouttes, Damien Vandembroucq (PMMH)
coarsening in phase-separated glasses at high temperature




blems for degraded acquisitio

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise

y = Ax + w : undetermined / ill-conditioned system
— a subspace of ATA is wrongly reconstructed
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blems for degraded acquisition

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise

Can we use additional constraints to improve the reconstruction ?
Idea : require the solution x to be a binary image

B x < [0, 1]V (after normalization)
R spatial regularity (domains)




Bayesian formulation of the reconstruction problem

Probabilistic formulation of the inverse problem.

P(xly) o< P(ylx) P(x) (%)
“Posterior” Forward model Binary prior
Quantity of interest Tomo geometry Expectations on x

Several approaches to reconstruct x
8 P(x|]y) — expectation of x;
& or compute the maximum a posteriori (MAP)
argmax, P(x|y)
=> solve an optimization problem



MAP approach : convex relaxation of binary problem

min |y — Ax[|3 + S TV(x) +Z ([0,1]")

TV(x) = Si|(W)i],= i V(01x:)” + (9ax:)°
total variation
penalization of gradients — piecewise constant images

A ([0, 1]’V) : convex relaxation of 7 ({0’ 1}N)

# Non-smooth convex optimization : iterative
method to find the solution
e Numerous studies of TV regularization for tomography : [Sidky
& Pan, Tang2009, Jia2010]
e Now available at the ESRF synchrotron
e Other kinds of spatial regularization may be used (non-convex)



Probabilistic approach : binary model

x € {—1,1}" + domains
P(x) : Ising model
(Markov random field)

Neighboring pixels more likely to have the same value :

P(x) oc e Tt
X HeE(U)EuJ“(SXi’Xj
o

(factorization along light rays 1)



Probabilistic approach : binary model

x € {—1,1}" 4+ domains
P(x) : Ising model
(Markov random field)

P9 o e

oc He

(factorization along light rays 1)
Posterior distribution
1 M 5
Pixly) = 3 1|3 (1 — X x) e+ Zweets
u=1 iepn

A product of factors involving different subsets of pixels



An intractable combinatorial problem

How to compute the marginals of pixel values

P(X,') ?
P(x)= > PKly)

x'e{-1,1}N;x/=x;
Sampling P(x|y) over 2" images is not possible !
(N ~ 10% — 10°)
8 Gibbs sampling [Liao & Herman] : slow for large
images
@ Can the expression of the marginal be simplified,
using the graph structure? (ex : using graph cuts for

segmentation)



An intractable combinatorial problem

How to compute the marginals of pixel values

P(X,') 7
Plx)= > PKXly)

x'e{-1,1}N;x/=x;
Sampling P(x|y) over 2" images is not possible !
(N ~ 10% — 10°)
8 Gibbs sampling [Liao & Herman] : slow for large
images
@ Can the expression of the marginal be simplified,
using the graph structure? (ex : using graph cuts for

segmentation)

Use belief propagation



What is belief propagation ?

A recursive technique for statistical inference on factor graphs
(e.g. Bayesian networks, Markov random fields)

A Different names for related ideas : belief propagation [Pearl 82],
sum-product [Gallager 62, LDPC codes], (approximate) message
passing, ...

Factor the computation of marginals of variables as a function
of other marginals (supposed to be known).

@ Exact and fast on trees
A Often a good approximation on other factor graphs

R Applications : error correcting codes (LDPC), satisfiability,
computer vision, ...



Messages defined on factor graph

factor nodes y=1,..., M

variables 1 ... N

Factor graph : bipartite graph of variables (pixels)
and (probability) factors
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all constraints but L.



Messages defined on factor graph

factor nodes p=1,...

variables 1 ... N

m,,—i(x;) : marginal of the variable x; in absence of
all constraints but L.



Messages defined on factor graph
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Messages defined on factor graph

factor nodes u=1,...

variables T1 ... N

mj_,,(x;) : marginal of the variable x; in absence of
constraint v



Relations between messages

tree graph general factor graph

factor nodes p=1,..., M

variables X1, N



Relations between messages

tree graph general factor graph

variables T1,... N

mj—u(x5) o< T Musi(x)
pejv

exact for a tree, not for a generic factor graph



Relations between messages

general factor graph

tree graph

factor nodes p=1,..., M

variables 1, N

Musi(xi) o >0 Pu{xhx) TT misu(x)

XjiJ EWFEI JENFI



Relations between messages

tree graph general factor graph

factor nodes 1 =1,...,
m variables X7,

Belief propagation : iterate to solve fixed-point equations

mj—v (X)) H ()
HEjFV

mu—w XI Z P {XJ} XI) H mJ_>M(XJ

XjijEpFEI JERFI



Relations between messages

tree graph general factor graph

factor nodes p=1,...,
m variables X7,

Belief propagation : iterate to solve fixed-point equations

mju (%)) H My (X))
WEjAY
i (X7) Z Pu({x}, xi) H mj—pu(x;)
ijeusél JENFAI

B Trees : convergence to exact marginals [Pearl 82]



Relations between messages

tree graph general factor graph

i factor nodes p=1,...,

variables X1, ..,
Belief propagation : iterate to solve fixed-point equatlons

mj—v (X)) H ()
HEjFV
i (i) Z Pu({x}, xi) H mj—p(x;)
XJJGM#I JENFEI

@ Generic graphs : "loopy" belief propagation [Murphy 99].
Convergence not guaranteed ; computes approximation of
marginals. May work very well even for images ( very loopy
graphs!)



Belief propagation for binary tomography

factor nodes p=1,...,. M

mi—~(x;) o< I Mu-i(xi)
HEIFY

() 0 30 0y, — Yo x5) e Buas

X ENF JEp
X Mjepzti Mj-u(%)



Belief propagation for binary tomography

variables 1. N

factor nodes ©=1,...,.M

() X 8l = X o) ek Eonens
Xj i EUFEI Jew
X Mjepsi Mj— (X))

2L terms, L ~ /N @... BP works well for small number of
variables / factor



Trick : use BP within BP!

Some formula massaging...

xi=%1 = mjiLu(x) x eihi—u

m“ﬁf(xi) - Z (()-(ylu - ij)eJu Z(jk)gu Xj Xk H ijM(Xj)

Xj JEWFET JEW JENFAI
xS by — 3 sg)eh Zmen 9t Ljezighion
X} jEnFEI JjEn

and a trick...
Replace the 0 by a Lagrange multiplier (canonical formulation)

(Xi) .8 Z GHZ:"XH—JM Z(jk)eu ijk+2jeu¢,- xjhjsp '

XjijEpAT

my i

(several iterations to find H)


https://github.com/eddam/bp-for-tomo

Trick : use BP within BP!

(xi) Z eHZfX’+J“ 2 yen Pk 2 i )

Xj jEUFAI

my—i

probability of a configuration : product of factors w/ 1 or 2
variables

= apply BP on a chain (easy)

N () (@)
'R N N L
: : : ‘ : '
My (5) Mo (25)

Code : https://github.com/eddam/bp-for-tomo


https://github.com/eddam/bp-for-tomo

Convergence of the algorithm : it works!

Noisefree measures + perfect model : perfect recovery possible
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number of iterations

Fast convergence when « large (enough measurements)

B Convergence slows down when the undersampling rate «
decreases (less measurements)

B No convergence above critical o (convergence time diverges)



Convergence of the algorithm : it works!

Noisefree measures + perfect model : perfect recovery possible
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B Convergence slows down when the undersampling rate «
decreases (less measurements)

B No convergence above critical o (convergence time diverges)

What is value of the critical a.?



Measuring the gradient-sparsity of images

Measuring the sparsity of the images

Compute the density of 1—pixel wide boundaries

__ # of pixels on boundaries

~ # of searched-for pixels



Measuring the gradient-sparsity of images




Phase diagram of noisefree recovery
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E. Gouillart et al., Inverse Problems, March 2013



Good robustness to noise (i.i.d. additive Gaussian noise)

Compare BP-tomo with TV regularization, for
A different undersampling «
A different values of the noise o

fraction of errors vs. noise amplitude
0.03

0.02}

0.00 0.01 0.02 0.03 0.04
NSR=0¢/L




A sharp transition with the undersampling rate

fraction of errors vs. undersampling rate

For a given level of noise, choose a not too close to the transition
(in applications : trade-off measurements./«noise)



Mean-field approximation to reduce memory cost

# {fhu—ﬁa mi—),u} = 2Nng o< N3/2

""Mean-field" approximation

Replace
mi—>,u — Z fhu—w’
VEIFL
by
 H#Hrveip -1

mj = s
] #{Ve[} Vz:el v—ri

m,_,; temporary variables computed when solving
the Ising chains, but not kept in memory



Mean-field approximation to reduce memory cost

.1 segmentation error vs. noise amplitude
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f very low noise : slight degradation

A moderate noise : same result, or slight improvement



Conclusions

8 Belief-propagation : an interesting algorithm
to compute expectations for combinatorial
problems described by a factor graph

e Tomography : impressive performance on synthetic binary data

e Sharp transition with undersampling rate « : stay far from
critical o

Next steps

e Test with real data : prior model not perfect, forward model
also not perfect... How robust is the algorithm ?

e More colors : three, fours, ...phases
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