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Tomographic reconstruction : an inverse problem

Projections of the sample
along several directions

y = Ax +w

y ∈ RM, x ∈ RN

w : noise

α =
M
N

α : undersampling rate

We want to find x knowing A and y
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In-situ tomography : image fast transformations

David Bouttes, Damien Vandembroucq (PMMH)
coarsening in phase-separated glasses at high temperature



Problems for degraded acquisition

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise

y = Ax+w : undetermined / ill-conditioned system
→ a subspace of ATA is wrongly reconstructed
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Problems for degraded acquisition

Courtesy David Bouttes

ex-situ in-situ : less measurements, more noise
Can we use additional constraints to improve the reconstruction ?
Idea : require the solution x to be a binary image

x ∈ [0, 1]N (after normalization)
spatial regularity (domains)



Bayesian formulation of the reconstruction problem

Probabilistic formulation of the inverse problem.

P(x|y) ∝ P(y|x) P(x) (?)

“Posterior”
Quantity of interest

Forward model
Tomo geometry

Binary prior
Expectations on x

Several approaches to reconstruct x
P(x|y) → expectation of xi

or compute the maximum a posteriori (MAP)
argmaxxP(x|y)

⇒ solve an optimization problem



MAP approach : convex relaxation of binary problem

minx ‖y− Ax‖22 + β TV(x) + I
(
[0, 1]N

)

TV(x) = ∑
i
∥∥∥(∇x)i

∥∥∥2= ∑
i
√
(∂1xi)

2 + (∂2xi)
2

total variation
penalization of gradients → piecewise constant images

I
(
[0, 1]N

)
: convex relaxation of I

(
{0, 1}N

)
Non-smooth convex optimization : iterative
method to find the solution

Numerous studies of TV regularization for tomography : [Sidky
& Pan, Tang2009, Jia2010]
Now available at the ESRF synchrotron
Other kinds of spatial regularization may be used (non-convex)



Probabilistic approach : binary model

x ∈ {−1, 1}n + domains
P(x) : Ising model
(Markov random field)

Neighboring pixels more likely to have the same value :

P(x) ∝ e
∑

〈i,j〉 Jijδxi ,xj

∝
∏
µ

e
∑

(ij)∈µ Jµδxi ,xj

(factorization along light rays µ)
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(Markov random field)

P(x) ∝ e
∑

〈i,j〉 Jijδxi ,xj

∝
∏
µ

e
∑

(ij)∈µ Jµδxi ,xj

(factorization along light rays µ)

Posterior distribution

P(x|y) = 1
Z

M∏
µ=1

δ
yµ −

∑
i∈µ

xi

 eJµ
∑

(ij)∈µ δxi ,xj


A product of factors involving different subsets of pixels



An intractable combinatorial problem

How to compute the marginals of pixel values
P(xi) ?

P(xi) =
∑

x′∈{−1,1}N ;x ′
i =xi

P(x′|y)

Sampling P(x|y) over 2N images is not possible !
(N ∼ 105 − 106)

Gibbs sampling [Liao & Herman] : slow for large
images
Can the expression of the marginal be simplified,
using the graph structure ? (ex : using graph cuts for
segmentation)

Use belief propagation
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What is belief propagation ?

A recursive technique for statistical inference on factor graphs
(e.g. Bayesian networks, Markov random fields)

Different names for related ideas : belief propagation [Pearl 82],
sum-product [Gallager 62, LDPC codes], (approximate) message
passing, ...

Factor the computation of marginals of variables as a function
of other marginals (supposed to be known).

Exact and fast on trees

Often a good approximation on other factor graphs

Applications : error correcting codes (LDPC), satisfiability,
computer vision, ...



Messages defined on factor graph

variables

factor nodes 

Factor graph : bipartite graph of variables (pixels)
and (probability) factors
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all constraints but µ.
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Relations between messages

tree graph general factor graph

variables

factor nodes 

mj→ν(xj) ∝
∏

µ∈j 6=ν
m̃µ→j(xj)

exact for a tree, not for a generic factor graph



Relations between messages

tree graph general factor graph

variables

factor nodes 

m̃µ→i(xi) ∝
∑

xj ;j∈µ 6=i
Pµ({xj}, xi)

∏
j∈µ 6=i

mj→µ(xj)
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tree graph general factor graph

variables
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Belief propagation : iterate to solve fixed-point equations
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Relations between messages
tree graph general factor graph

variables

factor nodes 

Belief propagation : iterate to solve fixed-point equations

mj→ν(xj) ∝
∏

µ∈j 6=ν

m̃µ→j(xj)

m̃µ→i(xi) ∝
∑

xj ;j∈µ 6=i
Pµ({xj}, xi)

∏
j∈µ 6=i

mj→µ(xj)

Generic graphs : "loopy" belief propagation [Murphy 99].
Convergence not guaranteed ; computes approximation of
marginals. May work very well even for images ( very loopy
graphs !)



Belief propagation for binary tomography
variables

factor nodes µ = 1, . . . ,M

x1,...,N

˜
m

µ
!
i(
x

i)

m

j!
� (
x

j )

mi→γ(xi) ∝
∏

µ∈i 6=γ
m̃µ→i(xi)

m̃µ→i(xi) ∝
∑

xj ;j∈µ 6=i
δ(yµ −

∑
j∈µ

xj) eJµ
∑

(jk)∈µ xjxk

×∏
j∈µ 6=i mj→µ(xj)



Belief propagation for binary tomography
variables

factor nodes µ = 1, . . . ,M

x1,...,N

˜
m

µ
!
i(
x

i)

m

j!
� (
x

j )

m̃µ→i(xi) ∝
∑

xj ;j∈µ 6=i
δ(yµ −

∑
j∈µ

xj) eJµ
∑

(jk)∈µ xjxk

×∏
j∈µ 6=i mj→µ(xj)

2L terms, L ∼
√

N /... BP works well for small number of
variables / factor



Trick : use BP within BP !
Some formula massaging...

xi = ±1 → mi→µ(xi) ∝ exi hi→µ

m̃µ→i(xi) ∝
∑

xj ;j∈µ6=i
δ(yµ −

∑
j∈µ

xj)e
Jµ

∑
(jk)∈µ

xj xk
∏

j∈µ 6=i
mj→µ(xj)

∝
∑

xj ;j∈µ6=i
δ(yµ −

∑
j∈µ

xj)e
Jµ

∑
(jk)∈µ

xj xk+
∑

j∈µ6=i xj hj→µ .

and a trick...
Replace the δ by a Lagrange multiplier (canonical formulation)

m̃µ→i(xi) ∝
∑

xj ;j∈µ6=i
eH
∑

i xi+Jµ

∑
(jk)∈µ

xj xk+
∑

j∈µ6=i xj hj→µ .

(several iterations to find H)

m̃µ→i(xi) ∝
∑

xj ;j∈µ6=i
eH
∑

i xi+Jµ

∑
(jk)∈µ

xj xk+
∑

j∈µ6=i xj hj→µ .

probability of a configuration : product of factors w/ 1 or 2
variables

⇒ apply BP on a chain (easy)

mi!µ(xi) mj!µ(xj)

⌘

R
j!j�1(xj)⌘

L
i!i+1(xi)

xi xj

Code : https://github.com/eddam/bp-for-tomo

https://github.com/eddam/bp-for-tomo
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Convergence of the algorithm : it works !

Noisefree measures + perfect model : perfect recovery possible

synthetic data
no noise, different α 0 20 40 60 80 100 120

number of iterations
10-5
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10-2

10-1

100
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α↘

Fast convergence when α large (enough measurements)
Convergence slows down when the undersampling rate α
decreases (less measurements)
No convergence above critical α (convergence time diverges)

What is value of the critical α ?
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Measuring the gradient-sparsity of images

Measuring the sparsity of the images

Compute the density of 1−pixel wide boundaries

ρ =
# of pixels on boundaries
# of searched-for pixels



Measuring the gradient-sparsity of images

ρ = 0.05 ρ = 0.09 ρ = 0.17



Phase diagram of noisefree recovery
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αc ' ρ : almost optimal recovery ! !
E. Gouillart et al., Inverse Problems, March 2013



Good robustness to noise (i.i.d. additive Gaussian noise)

Compare BP-tomo with TV regularization, for
different undersampling α
different values of the noise σ

fraction of errors vs. noise amplitude
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A sharp transition with the undersampling rate
fraction of errors vs. undersampling rate
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For a given level of noise, choose α not too close to the transition
(in applications : trade-off measurements / noise)



Mean-field approximation to reduce memory cost

# {m̃µ→i ,mi→µ} = 2Nnθ ∝ N3/2

"Mean-field" approximation
Replace

mi→µ =
∑

ν∈i 6=µ
m̃ν→i

by
mi =

#{ν ∈ i} − 1
#{ν ∈ i}

∑
ν∈i

m̃ν→i

m̃ν→i temporary variables computed when solving
the Ising chains, but not kept in memory



Mean-field approximation to reduce memory cost
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very low noise : slight degradation
moderate noise : same result, or slight improvement



Conclusions

Belief-propagation : an interesting algorithm
to compute expectations for combinatorial
problems described by a factor graph

Tomography : impressive performance on synthetic binary data

Sharp transition with undersampling rate α : stay far from
critical α

Next steps
Test with real data : prior model not perfect, forward model
also not perfect... How robust is the algorithm ?

More colors : three, fours, . . .phases
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